5th International Workshop on PET in Lymphoma Menton, September 20, 2014 Poster Session

Poster discussion PET in lymphoma - clinical

Ulrich Dührsen Department of Hematology University Hospital Essen

Philosophy of the abstract volume

Section	No. abstracts	Diseases
A	13	Hodgkin lymphoma
В	17	Non-Hodgkin lymphoma
С	6	Metabolic tumor volume
D	8	Other technical studies
LBA	1	Hodgkin lymphoma

Clinically versus technically oriented studies

45 abstracts on ,PET in lymphoma^e

29 clinically oriented studies

A1-A9, A13, B1, B3-B7, B10, B12-B17, C1, C3, C4, C6, D6, LBA

16 technically oriented studies

A10-A12, B2, B8, B9, B11, C2, C5, D1-D5, D7, D8

12 brief presentations

8 clinically oriented studies A4, A13, B5, B12, B13, C4, D6, LBA

6 technically oriented studies

A12, C2/C5, D2, D7/D8

29 clinically oriented studies

	HL	DLBCL	PMBCL	BL	PCNSL	PTCL	FL	MZL
Pre	A2, A5, A8, A13, C1, C3, D6	B5, D6				C4	D6	B14
Interim	A1, A3, A4, A6, A9, B17	B4, B6, B7, B15	B17	C6				
Post	×	₽3	₽1		B16		B10, B12, B13	
Follow-up	LBA							

25 clinically oriented studies

Baseline PET/CT

Diagnostic accuracy

Baseline PET/CT - NLPHL

A5: Grellier et al, Paris, France

Entity / study goal: NLPHL / performance of pre-therapeutic PET/CT

No. of patients: 35 (27 untreated, 8 relapsed), retrospective

Gold standard: CT

Results:

Per site analysis:

Sensitivity 100 % → Bone (marrow) lesions 20 %

Specificity 99 %

Positive predictive value 97 %

Negative predictive value 100 %

Accuracy 99 % → Stage modification 34 %

Conclusions: FDG-PET/CT is useful to define stage in NLPHL

Baseline PET/CT – MALT lymphomas

B14: Treglia et al, Bellinzona, Switzerland

Entity / study goal: Marginal zone lymphoma MALT / detection rate

Studies: 20 (published until February 2014)

No. of patients: 376, meta-analysis

Gold standard: ?

Results:

	<u>PET</u>	PET/CT
Overall detection rate	73 %	69 %
Bronchial MALT	9	4 %
Head & Neck MALT	9	0 %
Gastric MALT	6	2 %
Ocular MALT	4	9 %

Conclusions: MALT lymphomas are variably FDG-avid

Potential clinical role (radiotherapy in localized stages?)

25 clinically oriented studies

Baseline PET/CT

Bone marrow involvement

Baseline PET/CT – Hodgkin lymphoma

A2: Zwarthoed et al, Nice, France

Entity / study goal: Hodgkin lymphoma / bone (marrow) involvement

No. of patients: 152, advanced stage, retrospective

Gold standard: ? (bone marrow biopsy)

Treatment: ABVD

Results:

PET/CT Biopsy 3-yr PFS

Focal uptake 23 (15 %) 6 (of 11) 60 % vs. 79 %

Diffuse uptake 42 (28 %), correlated with spleen uptake, leukocytosis,

(≤ or > liver) anemia, hypalbuminemia, B symptoms

<u>Conclusions:</u> Focal uptake – stage IV disease

Diffuse uptake – reactive changes

Biopsy rarely changes stage, never changes treatment Excellent reviewer concordance (kappa coefficient 0,86)

Baseline PET/CT – BM involvement

D6: Ujjani et al, Washington, D.C., USA

The utility of 18F-FDG PET/CT in assessing bone marrow involvement in lymphoma (HL, DLBCL, FL)

25 clinically oriented studies

Baseline PET/CT

Prognostic impact

Baseline PET/CT – Hodgkin lymphoma

C1: Touati et al, Limoges, France

Entity / study goal: Hodgkin lymphoma / metabolic tumor volume

No. of patients: 46, stage I - IV, retrospective

Threshold for MTV: ≥ liver SUV + 3 SD (50 cm³ of normal liver)

Treatment: ?

Results:

Median MTV 194 cm³

ROC analysis No. pts. (%) 2-yr EFS

 $MTV \le 310 \text{ cm}^3$ 27 (59 %) 89 %

 $MTV > 310 \text{ cm}^3$ 19 (41 %) 28 % no correlation with CD68

Conclusions: Initial MTV predicts EFS in HL

(independently of other factors)

Baseline PET/CT – Hodgkin lymphoma

C3: Patel et al, Leeds, United Kingdom

Entity / study goal: Hodgkin lymphoma / metabolic tumor volume

No. of patients: 77, stage II – III (BM biopsy normal), retrospective

Threshold for MTV: 30 % or 40 % of SUVmax

Bone marrow uptake: normal vs. reactive

Treatment: ?

Results:

No correlation between PFS and SUVmax, MTV or TLG

Correlation between PFS and BM uptake pattern (reactive: HR 2,78)

Conclusions: Initial SUVmax, MTV or TLG do not predict PFS in HL

BM uptake pattern correlates with PFS

(cytokines released by HRS cells or monocytes?)

Baseline PET/CT – prognostic impact

B5: Hüttmann et al, Essen, Germany

Outcome of aggressive non-Hodgkin's lymphoma patients with a negative pre-treatment PET scan

A13: Kurch et al, Leipzig, Germany

Relevance of non-FDG-avid areas inside a tumour mass in paediatric Hodgkin lymphoma patients

C4: Cottereau et al, Rouen, France

Prognostic value of metabolic tumor volume measured on 18F-FDG PET/CT in patients with nodal presentation T cell lymphoma

25 clinically oriented studies

Interim PET/CT

Prognostic impact in HL

Interim PET/CT – Hodgkin lymphoma

A1: Miltényi et al, Debrecen, Hungary

Entity / study goal: Hodgkin lymphoma / interim PET/CT

No. of patients: 113 (62 early + 51 advanced), retrospective

Time point: After 2nd cycle Evaluation: Deauville criteria

Treatment: ABVD

Results:

	NPV	PPV	5-yr RFS	5-yr OS
All patients	93 %	57 %	93 % vs. 41 %	93 % vs. 58 %
Early	100 %	54 %		
Advanced	82 %	59 %		

Conclusions: Interim PET/CT is predictive of RFS and OS in HL

NPV better than PPV

Interim PET/CT – Hodgkin lymphoma

A3: Zaucha et al, Gdynia, Poland

Entity / study goal: Hodgkin lymphoma / interim PET/CT

No. of patients: 238 (71 early + 167 advanced), retrospective

Time point: After 1st (± 2nd) cycle

Evaluation: Deauville criteria (positive: 4+5)

Treatment: ABVD

Results:

	iPET1+	iPET2+	NPV	2-yr PFS (- vs. +)
Early	15 %	3 %	100 %	100 % vs. 80 %
Advanced	31 %	13 %	88 %	91 % vs. 47 %

<u>iPET1- / iPET2-:</u> 7 % / 14 % relapses in advanced stages

Conclusions: Interim PET/CT is predictive of PFS in HL

NPV of iPET better in early stages than in advanced stages

Interim PET/CT – Hodgkin lymphoma

A6: Dann et al, Haifa, Israel

Entity / study goal: Hodgkin lymphoma / interim PET/CT

No. of patients: 308, prospective

Time point: After 2nd cycle

Evaluation: Dynamic visual score, Deauville score

Treatment: ABVD (A), BEACOPPesc (B), radiotherapy (RT)

Stages	iPET negative	iPET positive _
Early favorable	2 x A + RT	$2 \times A + 2 \times A + RT$
Early unfavorable	$2 \times A + 2 \times A + RT$	$2 \times A + 4 \times A + RT$
Advanced IPS 0-2	$2 \times A + 4 \times A$	$2 \times A + 2 \times B + RT$
Advanced IPS 3-7	$2 \times B + 4 \times A$	$2 \times A + 2 \times B + RT$

Results:

	NPV	PPV	Accuracy
Dynamic visual score	88 %	29 %	81 %
Deauville	89 %	38 %	83 %

<u>Conclusions:</u> Both scores are predictive of PFS

Deauville slightly superior to dynamic visual score

Interim PET/CT – HL and PMBCL

B17: Algrin et al, Nice, France

Entity / study goal: Mediastinal lymphomas / interim PET/CT

No. of patients: 112 (68 HL + 44 PMBCL), retrospective

Time point: After 2nd or 4th cycle (PET2, PET4)

Evaluation: Deauville, Cheson, Gallamini, Dann / ΔSUV

Treatment: ?

Results:

	5-yr-PFS	5-yr-PFS	PET2	PET4
HL	68 %	ΔSUV >66 %	77 %	86 %
PMBCL	93 %	∆SUV <66 %	67 %	47 %

PET4 predicts PFS by Deauville score (only score 5) and ΔSUV

Conclusions: Interim PET/CT is predictive of PFS in mediastinal lymphomas

25 clinically oriented studies

Interim PET/CT

Prognostic impact in DLBCL and BL

Interim PET/CT – DLBCL

B6: Hutchings et al, Copenhagen, Denmark

Entity / study goal: DLBCL / interim PET/CT

No. of patients: 70 (37 PET1 + 33 PET2), prospective

Time point: Before therapy, after 1st and 2nd cycle and

at end of treatment (PET0, PET1, PET2, EOT)

Evaluation: iPET: Deauville (pos.: 4+5), ∆SUV; EOT: IHP

Treatment: GA101 + CHOP (response: CR + PR)

Results:

	PET1-	PET1+	PET2-	PET2+	Correlation EOT
Deauville PET1	49 %	51 %			None
Deauville PET2			67 %	33 %	None
ΔSUV PET1/PET0					Weak
ΔSUV PET2/PET0					None

Conclusions: Interim PET/CT is not predictive of EOT response in DLBCL

But: PET+ PR rated as EOT response, no PFS data

Interim PET/CT – DLBCL

B4: Mylam et al, Odense, Denmark

Entity / study goal: DLBCL / interim PET/CT

No. of patients: 112, prospective

Time point: Before therapy and after 1st cycle (PET0, PET1)

Evaluation: IHP, Deauville criteria (positive: 4+5 or 5)

Treatment: ?

Results:

	iPET-	iPET+	
IHP	n.	.S.	
Deauville 4+5	n.	.S.	
Deauville 5	85 %	51 %	p=0,002
Tumor/liver SUVmax 3.1	90 %	57 %	

Conclusions: Interim PET/CT is not predictive of PFS in DLBCL

Deauville 4+5 vs. 5 may be improved by use of T/L-SUV

Interim PET/CT

Deauville 5-point scale: Cut-of between 4 and 5?

Five-point Deauville Criteria.

```
Score 1 No uptake

Score 2 Uptake \( \leq \text{ mediastinum} \)

Score 3 Uptake \( > \text{ mediastinum} < \text{ liver} \)

Score 4 Uptake \( \text{ moderately in creased above liver at any site} \)

Score 5 Markedly in creased uptake at any site including new sites of disease
```

Interim PET/CT – AIDS-related lymphoma

B15: Viau et al, Nice, France

Entity / study goal: AIDS-related lymphoma / interim PET/CT

No. of patients: 19 (8 HL + 6 DLBCL + 5 BL), retrospective

Time point: Before therapy and after 2nd or 3rd cycle

Evaluation: $\Delta SUVmax$, $\Delta SULmax$, ΔMTV (> vs. < 66 %);

Deauville (positive: 4+5), tumor/liver activity

Treatment: ? (tumorSULmax/liverSULmean)

Results:

	3-yr-OS:	Good response	Poor respon	ise
ΔSUVmax	/ ΔSULmax	87 %	33 %	p<0,0001
ΔMTV				n.s.
Deauville		81 %	44 %	n.s.
Tumor/live	r activity 5	84 %	33 %	p<0,0001

Conclusions: ΔSUVmax is predictive of OS in AIDS-related lymphoma

Ratio tumorSULmax/liverSULmean is promising

Interim PET/CT – Burkitt lymphoma

C6: Shah et al, Mumbai, India

Entity / study goal: Burkitt lymphoma / interim PET/CT

No. of patients: 21 (14 children + 7 adults), retrospective

Time point: Before therapy and after 2nd or 3rd cycle

Evaluation: Δ SUVmax, Δ TLG

Treatment: ?

Results:

	No. pts.	2-yr-DFS
100 % reduction SUVmax and TLG	13	100 %
> 90 % reduction SUVmax and TLG	3	100 %
< 90 % reduction SUVmax and TLG	5	40 %

Conclusions: Both ΔSUVmax and ΔTLG are predictive of DFS in BL

High NPV (reliable identification of long-term responders)

25 clinically oriented studies

Interim PET/CT

Additional prognostic factors

Interim PET/CT – HL: tumor shrinkage

A9: Kobe et al, Cologne, Germany

Entity / study goal: Hodgkin lymphoma / interim PET/CT + tumor size

No. of patients: 739 (residual tumor ≥ 2,5 cm), prospective (HD15)

Time point: After chemotherapy, decision to deliver radiotherapy

Evaluation: Visual (central review)

Treatment: BEACOPP variants ± radiotherapy

Results:

	<u>INO. PTS.</u>	<u>4-yr-PFS</u>
PET negative (no radiotherapy)	548 (74 %)	92 %
PET positive (radiotherapy)	191 (26 %)	86 %
PET positive + ≥ 40 % shrinkage	137 (19 %)	93 %
PET positive + < 40 % shrinkage	54 (7 %)	72 %

Conclusions: Tumor shrinkage (as determined by CT) is predictive of PFS in HL pts. receiving RT for residual PET+ lesions

Interim PET/CT – DLBCL: molecular feat.

B7: Scherman et al, Creteil, France

Entity / study goal: DLBCL / interim PET/CT + molecular features

No. of patients: 91 (IHC + FISH: BCL2, BCL6, MYC), retrospective

Time point: After 2nd cycle

Evaluation: Visual, \(\Delta SUVmax \)

Treatment: ?

Results:

Slow metabolic response + BCL2 overexpression or BCL2 gene alteration

→ poor prognosis

Conclusions: BCL2 abnormalities improve prediction by iPET

Interim PET/CT – HL: lympho/mono ratio

A4: Simon et al, Debrecen, Hungary

Prognostic role of peripheral lymphocyte/monocyte ratio and interim PET/CT in Hodgkin lymphoma patients

25 clinically oriented studies

Post-treatment PET/CT

Prognostic impact

Post-treatment PET/CT - PCNSL

B16: Edeline et al, Saint-Cloud, France

Entity / study goal: PCNSL / post-treatment PET/CT

No. of patients: 10 (post-treatment: 9), retrospective

Time point: Pre- and post-treatment, comparison MRI

Evaluation: Visual and SUVmax (activity > surrounding brain)

Treatment: Chemotherapy (± radiotherapy)

Results:

	Pre PET+	PET-	Post PET+	PET-	Post-MRI+	MRI-
No. pts.	8	2	0	9	4	5
Relapse				6	4	2

Conclusions: Poor NPV of post-treatment PET/CT

MRI superior

25 clinically oriented studies

Post-treatment PET/CT

Additional prognostic factors

Post-treatment PET/CT – FL: MRD

B10: Luminari et al, Modena, Italy

Entity / study goal: Follicular lymphoma / post-treatment PET/CT + MRD

No. of patients: 41 (BCL2/IGH positive in bone marrow), prospective

Time point: End of treatment

Evaluation: Deauville (positive: 4+5)

Treatment: ?

Results:

No. pts. (%)		<u>PF</u>	PFS (HR)		
PET- / MRD -	28 (68 %)	PET- vs. PET+	3.61	p=0,028	
PET-/MRD+	8 (20 %)	MRD- vs. MRD+	2.54	p=0,060	
PET+ / MRD-	2 (5 %)	PET-/MRD- vs.			
PET+/MRD+	3 (7 %)	PET+ ± MRD+	3.42	p=0,012	

Conclusions: PET/CT and MRD provide independent information

Combining post-treatment PET/CT with post-treatment MRD

improves prediction of PFS

Post-treatment PET/CT – follicular lymph.

B12: Kostakoglu et al, New York, USA

Post-induction therapy FDG-PET is prognostic for PFS in relapsed follicular lymphoma: a preliminary analysis of the GAUSS study

B13: Trotman et al, Sydney, Australia

Prognostic value of PET/CT after frontline therapy in follicular lymphoma: applying the 5PS in three multicenter studies

25 clinically oriented studies

Follow-up PET/CT

Detection of relapse

Follow-up PET/CT – Hodgkin lymphoma

LBA: Pugliese et al, Naples, Italy

A randomized trial of routine surveillance imaging procedures: ultrasonography / chest radiography vs. FDG PET/CT for detecting relapse

in patients with advanced stage Hodgkin lymphoma